

Terrestrial Acidification, Ecotoxicity, and Eutrophication Potential Are Reduced in Production Systems that Include Perennial Forages

Ogechukwu J. Igboke, Elisandra S.O. Bortolon, and Marisol T. Berti Department of Plant Sciences

NDSU NORTH DAKOTA

Introduction

Perennial vs. Annual Forage Systems

Annual Forages

- Higher soil disturbance and carbon footprint
- Vulnerable to extreme weather events
- Reduce water and air quality and biodiversity

Perennial Forages

Produce more from the same area of land while reducing negative environmental impacts, conserving natural resources, and enhancing healthy ecosystem services (FAO)

Environmental Impact Assessment in Forage Production Systems

Environmental Impact Categories and Emission Concerns

Environmental Impact categories	Emission concerns	Units
Global warming potential	CO_2 , CH_4 , and N_2O	$Mg \ CO_2 - eq$
Ozone layer depletion	CH ₃ BR, Cl, and Br	mg CFC11 eq
Fossil energy consumption	$CO_2, CH_4, N_2O, SO_2, NO_x, and PM$	MJ
Abiotic depletion	Minerals and Material Consumption	N/A
Terrestrial acidification	SO ₂ , NO _x , and NH ₃	$g SO_2 - eq$
Ecotoxicity potential	SO_2 , NO_x etc.	СТИ
Eutrophication potential	$NO_2^-, NO_3^-, NO_x,$ $NH_3, and PO_4^{3-}$	$kgPO_4^- = eq$
Agricultural Resilience		

Research Problem

A comparison of perennial and annual forage cropping systems across environmental impact categories is needed.

Research Objectives

- Conduct a system review.
- Novel classification of forage cropping system types: BAU (business as usual), BAU-improved, AS (alternative or aspirational system), and DPCS (diverse perennial circular system).
- Conduct a meta-analysis.
- Evaluate and compare environmental impacts across moderators: (Number of years with perennials in crop rotation, Diversification, Crop life cycle, and Cropping system type).

Meta-Analysis Methodology

Meta-analysis : (Test for publication bias, Heterogeneity test, and Sensitivity analysis)

 Result: 2-3 years and > 5 years with perennials perform better in reducing ozone layer depletion, ecotoxicity, terrestrial acidification, and eutrophication potential.

Due to the lack of heterogeneity, the expected significant environmental benefit of diversified systems over monoculture was not observed.

Overall	a. Fossil Energy Consumption	Change n P value -1% 21 0.540	Overall	e. Ecotoxicity Potential	-42% 33 < 0.001
diversified		-0% 10 0.912	diversified	⊢	-33% 15 < 0.003
monoculture		-2% 11 0.268	monoculture	.	-50% 18 < 0.001
Overall diversified monoculture	b. Abiotic Depletion Potential	-78% 34 < 0.001 -78% 16 < 0.001 -78% 18 < 0.001	Overall diversified	f. Terrestrial Acidification Potential ♣ ♣	-61% 38 < 0.001 -63% 18 < 0.001 50% 20 < 0.001
Overall diversified monoculture	c. Global Warming Potential	-4% 42 < 0.001 -3% 20 < 0.018 -4% 22 < 0.001	Overall	g. Eutrophication Potential	-22% 38 < 0.001 -23% 18 < 0.001
Overall diversified monoculture	d. Ozone Layer Depletion	-38% 19 < 0.001 -36% 8 < 0.001 -38% 11 < 0.001	monoculture Effect size _1	18 -16 -14 -12 -10 -8 -6 -4 -2 (Environmental impact decrease	-20% 20 < 0.001 2 4 6 8 10 Environmental impact Increase

 Intercropping annual and perennial species significantly decreased abiotic depletion potential, ecotoxicity, terrestrial acidification, and eutrophication potential.

Overall DPCS AS BUA – improved BUA - control

DPCS recorded a 56%, 42%, and 34% more decrease in ecotoxicity, Terrestrial acidification and eutrophication potential, respectively, compared to BAU.

-89%

-92%

-43%

-24%

-69%

-73% 3

-64% 21

-67% 8

-31% 6

-31%

-39% 3

-22% 21

-5%

-23% 8

6

-36% 6

33 < 0.001

< 0.001

< 0.001

0.305

0.052

< 0.001

< 0.001

< 0.001

< 0.001

0.002

< 0.001

< 0.001

< 0.001

0.011

0.452

10

2

21

4

38

38

Conclusions

- Perennial forages significantly reduce terrestrial acidification, ecotoxicity, and eutrophication compared with annual monocultures.
- Diverse perennial circular cropping systems (DPCS), especially with alfalfa, could improve environmental impact categories and are more sustainable than annual monocultures.
- Future research:
- Continue measuring and modelling emissions from cropping systems with increased perenniality and diversity
- Evaluate biodiversity above and below ground

Thank you

- Establishing alfalfa in intercropping with sunflower and sorghum to improve alfalfa yield and profitability. Award no. 2022-70005-38225.
- Fostering Resilience and Ecosystem Services in Landscapes by Integrating Diverse Perennial Circular Systems (RESILIENCE CAP). Award no. 2021-68012-35917
- Alfalfa management practices and their effect on arbuscular mycorrhizal fungi (AMF) populations- towards improving health, productivity, and sustainability of alfalfa production. Award no. 2019-70005-30239.
 - CropSys-CAP- A novel management approach to increase productivity, resilience, and long-term sustainability of cropping systems in the northern Great Plains Award no. 2016-69004-24784

Marisol.berti@ndsu

Thank you

Funding sources: USDA-NIFA NAFA

Contact information: Marisol.berti@ndsu.edu

a. N^0 of Years	n (Change	n	P value			
> 5		—	H	-13%	7	0.291	
2 to 5				-16%	17	< 0.001	
≤1				-9%	23	0.012	
b. Diversification	on						
diversified				-12%	23	0.019	
monoculture		H		-11%	24	< 0.001	
c. Crop Life Cy	cle						
perennial		HHH		-19%	22	< 0.001	
annual-perennial		·	<u> </u>	-12%	3	0.573	
annual+perennial		—	ļ	-6%	1	0.714	
annual		H	 	-3%	21	0.534	
d. Cropping Sys	stem Type						
DPCS		—		-11%	7	0.212	
AS				-18%	23	< 0.001	
BAU - improved		·•	-	-6%	9	0.366	
BAU -control		н		-1%	8	0.791	
Effect size	-2 -1.5	-1 -0.5	0 0.5	1	1.5	2	
Decrease in net energy of lactation Increase in net energy of lactation							